Synchronization of GABAergic inputs to CA3 pyramidal cells precedes seizure-like event onset in juvenile rat hippocampal slices.
نویسندگان
چکیده
Here we address how dynamics of glutamatergic and GABAergic synaptic input to CA3 pyramidal cells contribute to spontaneous emergence and evolution of recurrent seizure-like events (SLEs) in juvenile (P10-13) rat hippocampal slices bathed in low-[Mg(2+)] artificial cerebrospinal fluid. In field potential recordings from the CA3 pyramidal layer, a short epoch of high-frequency oscillation (HFO; 400-800 Hz) was observed during the first 10 ms of SLE onset. GABAergic synaptic input currents to CA3 pyramidal cells were synchronized and coincided with HFO, whereas the glutamatergic input lagged by approximately 10 ms. If the intracellular [Cl(-)] remained unperturbed (cell-attached recordings) or was set high with whole cell electrode solution, CA3 pyramidal cell firing peaked with HFO and GABAergic input. By contrast, with low intracellular [Cl(-)], spikes of CA3 pyramidal cells lagged behind HFO and GABAergic input. This temporal arrangement of HFO, synaptic input sequence, synchrony of GABAergic currents, and pyramidal cell firing emerged gradually with preictal discharges until the SLE onset. Blockade of GABA(A) receptor-mediated currents by picrotoxin reduced the inter-SLE interval and the number of preictal discharges and did not block recurrent SLEs. Our data suggest that dynamic changes of the functional properties of GABAergic input contribute to ictogenesis and GABAergic and glutamatergic inputs are both excitatory at the instant of SLE onset. At the SLE onset GABAergic input contributes to synchronization and recruitment of pyramidal cells. We conjecture that this network state is reached by an activity-dependent shift in GABA reversal potential during the preictal phase.
منابع مشابه
Synchronization of GABAergic Inputs to CA3 Pyramidal Cells Precedes
25 Here we address how dynamics of glutamatergic and GABAergic synaptic input to CA3 26 pyramidal cells contribute to spontaneous emergence and evolution of recurrent seizure-like 27 events (SLEs) in juvenile (P10-13) rat hippocampal slices bathed in low-[Mg] artificial 28 cerebrospinal fluid. In field potential recordings from CA3 pyramidal layer a short epoch of 29 high frequency oscillation ...
متن کاملCharacterization of spontaneous network-driven synaptic activity in rat hippocampal slice cultures
A particular characteristic of the neonatal hippocampus is the presence of spontaneous network-driven oscillatory events, the so-called giant depolarizing potentials (GDPs). GDPs depend on the interplay between GABA and glutamate. Early in development, GABA, acting on GABAA receptors, depolarizes neuronal membranes via a Cl- efflux. Glutamate, via AMPA receptors, generates a positive feedback n...
متن کاملCharacterization of spontaneous network-driven synaptic activity in rat hippocampal slice cultures
A particular characteristic of the neonatal hippocampus is the presence of spontaneous network-driven oscillatory events, the so-called giant depolarizing potentials (GDPs). GDPs depend on the interplay between GABA and glutamate. Early in development, GABA, acting on GABAA receptors, depolarizes neuronal membranes via a Cl- efflux. Glutamate, via AMPA receptors, generates a positive feedback n...
متن کاملOntogeny of kainate-induced gamma oscillations in the rat CA3 hippocampus in vitro
GABAergic inhibition, which is instrumental in the generation of hippocampal gamma oscillations, undergoes significant changes during development. However, the development of hippocampal gamma oscillations remains largely unknown. Here, we explored the developmental features of kainate-induced oscillations (KA-Os) in CA3 region of rat hippocampal slices. Up to postnatal day P5, the bath applica...
متن کاملPrototypic seizure activity driven by mature hippocampal fast-spiking interneurons.
A variety of epileptic seizure models have shown that activation of glutamatergic pyramidal cells is usually required for rhythm generation and/or synchronization in hippocampal seizure-like oscillations in vitro. However, it still remains unclear whether GABAergic interneurons may be able to drive the seizure-like oscillations without glutamatergic transmission. Here, we found that electrical ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 102 4 شماره
صفحات -
تاریخ انتشار 2009